
Real Time Tracking

Laureando: Lorenzo Chelini
September 2015  

REAL TIME TRACKING !1

Introduction
What is Tracking ?
Application context

Goals

Three ways of tracking
Template Matching

Tracking based on Colors
Blob detection

 Tracking Algorithm
Library - OpenCV

Code - Object Detection With Colors
MeanShift and CamShift Tracking

Results
Test

Obtained results

REAL TIME TRACKING !2

Introduction

What Is Tracking

We talk about tracking when we are considering the ability of an
elaborator, in the simplest way a computer, to hook and follow a
specific object, which is contained in a sequence of images captured
by a camera at a specific frame rate. Some difficulties to be considered
rise from the definition of tracking that we should consider.
 First of all the environment which the object is immerse into is a
dynamic one, it means that we should consider also the changes in the
weather condition and in the illumination as well.
Secondly we should consider that in the environment there could be
also inanimate or animated objects that may move around or may be
in a slowly transformation. Therefore summarizing (briefly) the
difficulties that a tracking algorithm has to face:

• Occlusion caused by objects that are between the target and the
camera.

• The changes sense by the camera about the tracking object for
example: illumination or pose changes.

• 	Objects that are similar in shape or dimension to the target may
mislead the algorithm.

So, tracking algorithms or in general computer vison real-time systems
need a lot of elaboration, that was unthinkable only few years ago: we
must only think that this same power elaboration for the human brain
keep 60 billion neurons busy. However, nowadays, the progress in
technology has mitigated the problem above-mentioned and more
and more hardware can solve these problems, with real-time

REAL TIME TRACKING !3

constrains, in a short frame time. Moreover a lot of techniques and
dedicated library has been developed, OpenCv is an example.

REAL TIME TRACKING !4

Application Context

The thesis has been written for RAPID project, RAPID stand for
Robotic Arm empowering People wIth Disabilities

REAL TIME TRACKING !5

Goals

The aim of the thesis is to set up real-time algorithms optimized for a
mobile camera. In the next few paragraph we will also introduce three
different techniques for tracking and we will try to understand the
pros and cons for each of them. This allows, in future works, to build
up much stronger algorithms. Another aspect that requires attention is
the rules or methods in order to detect automatically the target loss.
So the main characteristic that these types of algorithm should have is
a low CPU overwhelming in order to be executed on dedicated
hardware.

REAL TIME TRACKING !6

Three ways of tracking

Template Matching

Template Matching is a high-level
machine vision technique that identifies
the different parts of an image on the
image itself that match a predefined
template. Template matching techniques
are flexible and relatively straightforward
to use, which makes them one of the most

important and popular method of objects localization. However their
application is limited mostly by the available computation power, as
identification of big and complex templates can be time-consuming.
Template Matching techniques are expected to address the following
need: Once we have provided a reference image of an object (the
template image or patch) and an image to be inspected (the input
image), we want to identify all input image locations at which the
object from the template image is present. To identify the matching
area, we have to compare the template image against the source
image by sliding it. “By sliding”, means that we move the patch one
pixel at a time (left to right, up to down). At each location(x,y), it is
calculated a metric that represents how “good” or “bad” the match at
that location is. So actually what we do is very simple: we position the
template over the image at every possible location, and each time we
compute some numeric measures of similarity between the template
and the image segment it currently overlaps with. Finally we identify
the positions that yield the best similarity measures. One of the sub

REAL TIME TRACKING !7

problems that occur in the specification above is calculating the
similarity measure of the aligned template image and the overlapped
segment of the input image, which is equivalent to calculating a
similarity measure of two images of equal dimensions. This is a
classical task: for this reason OpenCv (the library used in this thesis)
makes available some methods which are:

The last key part of this process is to identify which are the points that
are good enough to be considered actual matches. This can be done
following these sample rules:

• We consider matches the points for which the measuring
method gave us a higher value than a predefined threshold.

REAL TIME TRACKING !8

• We consider matches the points for which the measuring
method gave us a higher value than the value that the same
method gave us for their neighbors.

Though the introduced technique was sufficient to solve sample
problems, we may notice its important drawbacks:

• Template occurrences have to preserve the orientation of the
reference template image.

• The method is inefficient, as calculating the template correlation
image for medium to large images is time wasting.

Advance template matching technique:
Pyramid Processing is an advanced template matching algorithm that
extends the original idea enhancing its efficiency. The Image pyramid
is a series of images, each image being a result of downsampling
(means scaling down) of the previous element. The important
observation is that the template depicted in the reference image
usually is still discernible after significant downsampling of the image
(though, naturally, fine details are lost in the process). Therefore we
can identify match candidates in the downsampled (and therefore
much faster to process) image on the highest level of our pyramid, and
then repeat the search on the lower levels of the pyramid; each time
considering only the template positions that scored high on the
previous level. At each level of the pyramid we will need appropriately
downsampled picture of the reference template, i.e. both input image
pyramid and template image pyramid should be computed.

	 	  

REAL TIME TRACKING !9

Tracking Based On Colors

Tracking based on colors is another
popular method of object localization.
The main idea consists of using the
chromatics characteristics of the target
in order to distinguish it from the
background. The technique expects to
build a histogram, using the chromatic

characteristics of the target, to compare with the image. The result is
a bunch of pixels that have been located according to the level of
correspondence. Moreover modern techniques use, in addition,
clustering algorithm in order to identify the area in which the pixels
(whose chromatic color is the same as the target) density is maximum.
One of the limitation that this type of algorithm has is the fact that
the target should have different colors from the background.

REAL TIME TRACKING !10

Blob Detection

Blob detection method is aimed at
detecting regions in an image that differ in
properties, such as for example color or
brightness, compared to surrounding
regions. So a Blob is a region of an image
in which some properties are constant (or
approximately constant); all the pixels in a

Blob can be considered in some way to be similar to each other. There
are two main classes of blob detectors:

• Differential Methods
• Method based on local extrema (or Interest point operators)

which are based on finding the local maxima and minima of the
function.

In this thesis we will consider only the second one, Interest point
operators. In computer vision the concept of interest points also called
keypoints or feature points, has been largely used to solve many
problems in object recognition. This concept relies on the idea that
instead of looking at the image as a whole, it could be advantageous
to select some special points in the image and perform a local analysis
on them. This approach works well as long as a sufficient number of
such points are detected in the image of interest and these points
distinguishing. As they are used for analyzing image content, feature
points should ideally been detected at the same scene or object
location no matter from which viewpoint, scale or orientation the
image was taken. View invariance is a very desirable property in
image analysis and has been the object of numerous studies. So how
extract keypoints from the images ? When searching for interesting
feature points in images, corner come out as an interesting solution.

REAL TIME TRACKING !11

Corner are interesting because they are two dimensional features that
can be accurately localized, as they are at the junction of two edges.
OpenCV handles several local feature detector implementations
thorough the FeatureDetector abstract class and its
Ptr<FeatureDetector>FeatureDetector::create(const string&
detectorType) method or through the algorithm class directly. In the
first case, the type of detector is specified (see the following diagrams)

REAL TIME TRACKING !12

REAL TIME TRACKING !13

The best results in pattern detection are achieved if the detector
computes keypoint orientation and size. This makes keypoints
invariant to rotation and scale. The most famous and robust keypoint
detection algorithm are well known: they are used in SIFT and SURF
feature detection and descriptor extraction.
 

REAL TIME TRACKING !14

Once we have our keypoint detected we have to use descriptor
extractors in order to provide a measure and distance function for a
small patch around interest point. Therefore, whenever the similarity
between two images patches needs to be estimated, we compute their
descriptor and measure the distance. In OpenCV the
Ptr<DescriptorExtractor>DescriptorExtractor::create(const String&
DescriptorExtractorType) function creates a new descriptor extractor
of the selected type. (see the diagram above) 

REAL TIME TRACKING !15

Tracking Algorithm

Library - Opencv

OpenCV is an open source (http://opensource.org) computer vision
library availed from http://SourceForge.net/projects/opencvlibrary.
The library is written in C an C++ and runs under Linux, Windows
and Mac OS X. OpenCV was designed for computational efficiency
and with strong focus on real-time application. One of OpenCV’s
goals is to provide a simple-to-use computer vision infrastructure that
helps people build sophisticated vison applications quickly. The
OpenCV library contain over 500 functions that span many areas in
vision, including medical imaging, security, user interface and robotics.

REAL TIME TRACKING !16

http://opensource.org

REAL TIME TRACKING !17

Code - Object Detection
With Colors

Some details:
Requirements needed in order to use this software:

• you should install the last version of OpenCV library (the
version used for development is OpenCV 3.0).

• you should have a default camera.

Using this software the user can select and track an object in real-time.

The main idea is illustrated below, once the user selected the area that
match a sample of what he or she is looking for, the algorithm start a
real time elaboration scanning the frame captured by the default
camera (the frame rate can be modified by the user) in order to locate
the ROI (Region Of Interest, or in other worlds, the area selected by
the user).
There are three main steps:
In the first one the algorithm create,using calcHist function,the
histogram of the image, we can thing the histogram as a simple table
that gives you the number of pixels that have a given value in an
image.
The histogram of a grey-level image will, therefore, have 256 entries
(or bins).
Bin 0 gives you the number of pixels that have the value , bin 1 gives
you the number of pixels that have the value 1, and so on.
Once the histogram of the ROI image has been created, the second
step comes into play.

REAL TIME TRACKING !18

In this step we use, calcBackProject function, so what mean
BackProject an histogram ?
Well, BackProjecting a histogram consists of replacing each pixel
value in an input image with its corresponding probability value read
in the normalized histogram (by normalizing an histogram we obtain
a function that gives us the probability that a pixel of a given intensity
value belongs to the defined area).
The result of this step is a probability map, with probability belonging
to the reference area ranging from bright (low probability) to dark
(hight probability).
In the third step we use CamShift Algorithm in order to locate the
exact position of the object, in other worlds the result of a histogram
back-projection, as we have just said, is a probability map that express
the probability that a given piece of image content is found at a
specific image location.
So if we know the approximate location of an object in the image, the
probability map can be used in order to find the exact position of the
object.
The most probable location will be the one that maximizes this
probability inside a given window.
In conclusion if we know the approximate location of the object and
if we start looking from that point and iteratively move around we
should locate the exact position of the object, that stuff is done by the
Camshift function.

REAL TIME TRACKING !19

Code Structure

Classe: Camera
class camera{
private:

 enum class CameraResolution{
 RES_640x480 = 0, /**< 640x480 pixel resolution*/
 RES_320x240, /**< 320x240 pixel resolution*/
 RES_1280x960 /**< 1280x960 pixel resolution*/
 };

 enum class RetType {
 OK = 0, /**< NO error*/
 Error, /**< Generic error*/
 UnsupportedRes, /**< Resolution non supported by the camera */
 UnsupportedFrameRate, /**< Frame Rate non supported by the camera */
 CameraErrorIndex, /**< Unable to get the camera */
 OutofResError, /**< Out of Resolution error*/
 ErrorParsing, /**< Error while reading parameters*/
 	
 };

 CameraResolution camRes; //camera resolution (read from xml file)

 int frameRate; //frame rate (read from xml file)
 int cameraIndex; //camera index (read from xml file)

 cv::Mat frame; //next frame captured by camera
 cv::VideoCapture video;

 xmlParser* xml; //parser

REAL TIME TRACKING !20

 RetType assegna(std::string what, std::string value); //assign camera's parameters, called by
setParam()
 bool setCameraRis(); //set camera resolution

public:

 camera(xmlParser xml); //constructor
 bool openCamera(); //open camera
 bool setParam(); //set camera's parameters
 int getFrameRate(); //getFrameRate
 cv::Mat nextFrame(); //get next frame

};

Camera.cpp

Note: this method open video stream using the cameraIndex read in
the xml file

bool camera:: openCamera(){
 video.open(cameraIndex);
 if(!video.isOpened())
 return false;
 return true;
}

Note: this method return the frame rate, read from the xml file, i want
to underline that this method is a public one because is used by
ObjectDetector.cpp in particular by the public method
StartTracking().

int camera::getFrameRate(){
 return frameRate;
}

Note: this public method used by ObjectDetector.cpp in particular by
StartTracking(), return the frame captured by the camera NULL
otherwise.

REAL TIME TRACKING !21

cv::Mat camera::nextFrame(){
 cv::Mat frame;

 if (!video.read(frame)) {
 std::cout << "Unable to retrieve frame from video stream." << std::endl;
 }

 if(frame.empty())
 frame = NULL;
 return frame;
}

Note: this public method is used in order to read and set camera
parameters (note that the method call assegna(std::string w, std::string
v))
I use a std::vector in order to get the parameters from xml file (see
parse() for more details) note that before using the parse method you
have to update the target in the xml file so the correct procedures are:
1) updateTarget
2) call parse()
Additionally note that the data are stored in the vector in this way:
[name,data] + [name,data] + []….. and so on.
Tips: this boolean method return false if an error occurred and the
program ends, but we can do in this other way : if an error occurred
we can set a flag and then, after the opening of the camera we can
add method in order to read camera resolution (with
videoCapture.get) or we can set default values.

bool camera:: setParam(){
 std::vector<std::string> list;
 camera::RetType ris;
 xml->updateTarget("camera");
 list = xml->parse();
 if(list.size() == 0){

REAL TIME TRACKING !22

 ris = RetType::ErrorParsing;
 return false;
 }

 for(int i=0; i<list.size(); i = i+2){
 std::string what = list.at(i);
 std::string value = list.at(i+1);
 ris = assegna(what,value);
 switch(ris) {
 case camera::RetType::UnsupportedFrameRate : std::cout << "unsupported frame
rate" << std::endl; return false; break;
 case camera::RetType::CameraErrorIndex : std::cout << "camera index error" <<
std::endl; return false; break;
 case camera::RetType::UnsupportedRes : std::cout << "unsupported resolution" <<
std::endl;return false; break;
 default: break;
 }
 }

 return true;
}

Note: this private method called by setParam is used in order to assign
the values read from xml file.
if an error has occurred during the reading return the particular type
of error that will be catch by setParam().
Moreover note that this method call setCameraRis().

REAL TIME TRACKING !23

camera::RetType camera::assegna(std::string w, std::string v){

 RetType ris = RetType::OK;

 const char * what = w.c_str();
 const char* value = v.c_str();

 if(std::strcmp(what,"frameRate")==0){
 std::cout << "setto frame rate" << std::endl;
 int fr = std::atoi(value);
 //frame rate realizzato con wiatKey() basta
 //che sia maggiore di 0
 if(fr <= 0){
 std::cout << "frame Rate <= 0" << std::endl;
 ris = RetType::UnsupportedFrameRate;
 }
 frameRate = fr;
 return ris;
 }

 if(std::strcmp(what,"cameraIndex")==0){
 std::cout << "setto camera Index" << std::endl;
 int ci = std::atoi(value);
 if(ci < 0){
 std::cout << "Camera Index <= 0" << std::endl;
 ris = RetType::CameraErrorIndex;
 }
 cameraIndex = ci;
 return ris;
 }

 if(std::strcmp(what,"cameraResolution")==0){
 std::cout << "setto risoluzione camera" << std::endl;
 int index = std::atoi(value);
 switch (index) {
 case 0:
 camRes = CameraResolution::RES_320x240;
 if(!setCameraRis())
 ris = RetType::UnsupportedRes;

REAL TIME TRACKING !24

 break;
 case 1:
 camRes = CameraResolution::RES_640x480;
 if(!setCameraRis())
 ris = RetType::UnsupportedRes;
 default:
 camRes = CameraResolution::RES_1280x960;
 if(!setCameraRis())
 ris = RetType::UnsupportedRes;
 break;
 }

 return ris;
 }
 return ris;
}

REAL TIME TRACKING !25

Note: this private method called by assegna set the camera resolution
using videoCaputer::set method.

bool camera:: setCameraRis(){
 bool width = true;
 bool height = true;

 switch(camRes) {
 case CameraResolution::RES_320x240:
 if(!video.set(CV_CAP_PROP_FRAME_WIDTH,320))
 width = false;
 if(!video.set(CV_CAP_PROP_FRAME_HEIGHT,240))
 height = false;
 break;
 case CameraResolution::RES_640x480:
 if(!video.set(CV_CAP_PROP_FRAME_WIDTH,640))
 width = false;
 if(!video.set(CV_CAP_PROP_FRAME_HEIGHT,480))
 height = false;
 break;
 default:
 if(!video.set(CV_CAP_PROP_FRAME_WIDTH,1280))
 width = false;
 if(!video.set(CV_CAP_PROP_FRAME_HEIGHT,960))
 height = false;
 break;

 }
 return width && height;
}

REAL TIME TRACKING !26

Classe: XMLparser
Note: here we use rapidXML : http://rapidxml.sourceforge.net/
Manual : http://rapidxml.sourceforge.net/manual.html

class xmlParser{

private:

 std::string file; //target file

 std::string target; //target node

 std::string getTarget(); //get target name

public:

 xmlParser(std::string); //constructor

 void updateTarget(std::string); //modify target

 std::vector<std::string> parse(); //parsing

};

XMLparser.cpp

Note: this method update the target node.

void xmlParser::updateTarget(std::string update){
 target = update;
}

Note: this method return the target node.

std::string xmlParser::getTarget(){
 return target;
}

REAL TIME TRACKING !27

http://rapidxml.sourceforge.net/

Note: this method return a vector <std::String > filled with data.
The data are filled in this way :
[name + data],[name + data],…,
First of all the method open the target file or exit if an error has
occurred during that operation, then the method catch the root node
in the xml file identified by target and lookup for all of his children
and get their names and values.

std::vector<std::string> xmlParser::parse(){
 std::vector<std::string> list;
 list.clear();

 std::string target = getTarget();
 const char * w = target.c_str();

 std::cout << "Parsing my file..." << std::endl;
 rapidxml::xml_document<> doc;
 rapidxml::xml_node<> * root_node;

 std::ifstream theFile ("../parametri.xml");
 if(!theFile.good()){
 std::cout << "File not found" << std::endl;
 exit(-1);
 }

 std::vector<char> buffer((std::istreambuf_iterator<char>(theFile)),
std::istreambuf_iterator<char>());
 buffer.push_back(‘\0');

 doc.parse<0>(&buffer[0]);

 root_node = doc.first_node("parametri");

 rapidxml::xml_node<> * object_node = root_node->first_node(w);

 for(rapidxml::xml_node<>* child = object_node->first_node(); child; child = child-
>next_sibling()){
 list.push_back(child->first_attribute("name")->value());

REAL TIME TRACKING !28

 list.push_back(child->value());
 }

 return list;
}

Classe: ObjectDetector
class ObjectDetector{

private:

 enum class RetType {

 OK = 0, /**< NO error*/

 Error, /**< Generic error*/

 ErrorParsing, /**< error while reading parameters*/

 };

 bool selectObject;

 int trackObject;

 std::string windowName;

 cv::Mat image;

 cv::Mat hsv;

 cv::Mat hue;

 cv::Mat mask;

 cv::Mat hist;

 cv::Mat backproj;

 cv::Rect trackWindow;

 xmlParser* xml;

 camera* cam;

 struct targetCoordinates{

REAL TIME TRACKING !29

 cv::Point origin;

 cv::Point lastCenter;

 cv::Rect selection;

 }tc;

 struct hsvParameters{

 int hsize; //number of bins

 float hranges[2]; // pixel value ranges

 const float* phranges = hranges;

 }hsvParam;

 struct targetArea{

 int counter;

 cv::Size2f mArea;

 float h;

 float w;

 }ta;

 bool readParam(std::string w);

 void setParam(std::string w, std::string v);

 void openWindow();

 void onMouse(int event, int x, int y, int flags);

 bool elaborate();

 double norm_L2(const cv::Point &x , const cv::Point &y);

public:

 ObjectDetector(xmlParser &xml, camera &c);

 void startTracking();

 static void onMouseWrapper(int event, int x, int y, int flags, void* that);

};

REAL TIME TRACKING !30

ObjectDetector.cpp

Note: this method look quite similar to setParam() in Camera.cpp, so
nothing new must be reported.
this method is called by the constructor.

bool ObjectDetector::readParam(std::string w){

 std::vector<std::string> list;
 xml->updateTarget(w);
 list = xml->parse();
 if(list.size() == 0){
 return false;
 }
 for(int i=0; i<list.size(); i = i+2){
 std::string what = list.at(i);
 std::string value = list.at(i+1);
 setParam(what,value);
 }

 return true;

}

Note: this method look quite similar to assegna() in Camera.cpp, so
nothing new must be reported.
this method is called by the readParam().

void ObjectDetector::setParam(std::string w, std::string v){

 const char * what = w.c_str();
 const char* value = v.c_str();

 if(std::strcmp(what,"hsize")==0){
 std::cout << "setto hsize" << std::endl;
 hsvParam.hsize = std::atoi(value);
 }

 if(std::strcmp(what,"hranges0")==0){

REAL TIME TRACKING !31

 std::cout << "setto hranges first param" << std::endl;
 hsvParam.hranges[0] = std::atoi(value);
 }

 if(std::strcmp(what,"hranges1")==0){
 std::cout << "setto hranges second param" << std::endl;
 hsvParam.hranges[1] = std::atoi(value);
 }

 if(std::strcmp(what,"windowName")==0){
 std::cout << "setto windowName" << std::endl;
 windowName = value;
 }

}

Note: this method is called by StartTracking().
This method create a new window and set on this window the
MouseCallback handler.
WindowName represent the window’s name and it is read from the
xml file.

void ObjectDetector::openWindow(){
 cv::namedWindow(windowName, cv::WINDOW_AUTOSIZE);
 cv::setMouseCallback(windowName, ObjectDetector::onMouseWrapper,this);
}

Note: this method has to be added because the native function
cv::setMouseCallback wants a static method to be called.

void ObjectDetector::openWindow(){
 cv::namedWindow(windowName, cv::WINDOW_AUTOSIZE);
 cv::setMouseCallback(windowName, ObjectDetector::onMouseWrapper,this);
}

REAL TIME TRACKING !32

Note:

void ObjectDetector::onMouse(int event, int x, int y, int flags){
 if(selectObject)
 {
 tc.selection.x = MIN(x, tc.origin.x);
 tc.selection.y = MIN(y, tc.origin.y);
 tc.selection.width = std::abs(x - tc.origin.x);
 tc.selection.height = std::abs(y - tc.origin.y);
 tc.selection &= cv::Rect(0, 0, image.cols, image.rows);
 }

 switch(event)
 {
 case cv::EVENT_LBUTTONDOWN:
 tc.origin = cv::Point(x,y);
 tc.selection = cv::Rect(x,y,0,0);
 selectObject = true;
 break;
 case cv::EVENT_LBUTTONUP:
 selectObject = false;
 tc.lastCenter = tc.origin;
 if(tc.selection.width > 0 && tc.selection.height > 0){
 trackObject = -1;
 }
 break;
 }

}

REAL TIME TRACKING !33

Note: this public method first of all calls the readParam function in
order to read from the xml file interface parameters such as window’s
name for example.
Secondly it calls openWindow() method and openCamera() (see these
methods for more details)
The for cycle is used to catch new frame and elaborate it within a
specific frame rate time forced by waitKey() method.

void ObjectDetector::startTracking(){

 readParam("UserInterface");

 openWindow();

 cam->openCamera();

 for(;;){

 image = cam->nextFrame();

 if(image.empty()){
 std::cout << image.empty() << std::endl;
 break;
 }

 cvtColor(image, hsv, cv::COLOR_BGR2HSV);

 cv::Rect trackWindow;

 if(!elaborate())
 return;

 if(selectObject && tc.selection.width > 0 && tc.selection.height > 0)
 {
 cv::Mat roi(image, tc.selection);
 bitwise_not(roi, roi);

REAL TIME TRACKING !34

 }

 imshow(windowName, image);

 char c = (char)cv::waitKey(cam->getFrameRate());
 if(c == 27)
 break;

 }

}

Note:This private method elaborates the image.
Let’s analyze the first if.
In the first part : the method prepares the hsv parameters for the
elaboration and also if trackObject < 0, (it means that the roi has
been selected by the user) calculates the histogram.
In the second part the method calls CamShift function and evaluates
two conditions:
The first condition compares the height and the width of the tracked
object with height and width approximation that has been made in
the first 50 iterations.
The purpose of this condition is to control the shape of the tracked
object if this shape change too much it means that i have lost the
object.
The second condition calculate the distance between the last center of
the tracked object and the new one, if this distance is bigger than 100
it means that probably i have lost the tracked object.
Finally if the conditions have been respected the method updates the
position of the object.

REAL TIME TRACKING !35

bool ObjectDetector::elaborate(){

 if(trackObject)
 {
 //se trackobject diverso da zero
 cv::inRange(hsv, cv::Scalar(0, 30, 10),
 cv::Scalar(180, 256, 256), mask);
 int ch[] = {0, 0};
 hue.create(hsv.size(), hsv.depth());
 mixChannels(&hsv, 1, &hue, 1, ch, 1);
 //imshow("mix", hsv);

 if(trackObject < 0)
 {
 //caso di trackobject = -1, settato in questo
 //modo dopo avere selezionato il Roi
 //genero histogram
 cv::Mat roi(hue, tc.selection), maskroi(mask, tc.selection);
 calcHist(&roi, 1, 0, maskroi, hist, 1, &hsvParam.hsize, &hsvParam.phranges);
 normalize(hist, hist, 0, 255, cv::NORM_MINMAX);
 trackWindow = tc.selection;
 trackObject = 1;
 }

 calcBackProject(&hue, 1, 0, hist, backproj, &hsvParam.phranges);
 backproj &= mask;
 cv::RotatedRect trackBox = CamShift(backproj, trackWindow,
 cv::TermCriteria(cv::TermCriteria::EPS |
cv::TermCriteria::COUNT, 10, 1));

 if(ta.counter < 50){
 ta.mArea += trackBox.size;
 ta.counter ++;
 ta.h = ta.mArea.height/ta.counter;
 ta.w = ta.mArea.width/ta.counter;
 }

 if(abs(trackBox.size.width - ta.w) > 50 || (abs(trackBox.size.height - ta.h) > 50)){
 std::cout << "lost track for width or height" << std::endl;
 std::cout << abs(trackBox.size.width - ta.w) << std::endl;
 std::cout << abs(trackBox.size.height - ta.h) << std::endl;

REAL TIME TRACKING !36

 return false;
 }

 if(norm_L2(trackBox.center, tc.lastCenter)>100){
 std::cout << "lost Track for center" << std::endl;
 std::cout << norm_L2(trackBox.center, tc.lastCenter) << std::endl;
 return false;
 }

 //update
 tc.lastCenter = trackBox.center;

 ellipse(image, trackBox, cv::Scalar(0,0,255), 3, cv::LINE_AA);

 }

 return true;

}

Note: this method calculate the distance between two points.

double ObjectDetector:: norm_L2(const cv::Point &x, const cv::Point &y)
{
 return std::sqrt((double)((x.x-y.x)*(x.x-y.x)+(x.y-y.y)*(x.y-y.y)));
}

REAL TIME TRACKING !37

XML file
<?xml version="1.0" encoding="utf-8"?>

<parametri>

 <camera name="iSight">

 <frameRate name="frameRate">1</frameRate>

 <cameraIndex name="cameraIndex">0</cameraIndex>

 <camRes name="cameraResolution">1</camRes>

 </camera>

 <hsv name="hsvParameters">

 <hsize name="hsize">16</hsize>

 <hranges0 name="hranges0">0</hranges0>

 <hranges1 name="hranges1">180</hranges1>

 </hsv>

 <UserInterface name="userInterface">

 <window name="windowName">OpenCV</window>

 </UserInterface>

</parametri>

<!--- il documento è stato validato: http://www.w3schools.com/xml/xml_validator.asp -->

REAL TIME TRACKING !38

XSD schema
(generated using this tool: http://www.freeformatter.com/xsd-generator.html)

<xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="parametri">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="camera">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="frameRate">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:byte">

 <xs:attribute type="xs:string" name="name"/>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 </xs:element>

 <xs:element name="cameraIndex">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:byte">

 <xs:attribute type="xs:string" name="name"/>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 </xs:element>

 <xs:element name="camRes">

 <xs:complexType>

REAL TIME TRACKING !39

http://www.freeformatter.com/xsd-generator.html

 <xs:simpleContent>

 <xs:extension base="xs:byte">

 <xs:attribute type="xs:string" name="name"/>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 <xs:attribute type="xs:string" name="name"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="hsv">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="hsize">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:byte">

 <xs:attribute type="xs:string" name="name"/>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 </xs:element>

 <xs:element name="hranges0">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:byte">

 <xs:attribute type="xs:string" name="name"/>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 </xs:element>

 <xs:element name="hranges1">

REAL TIME TRACKING !40

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:short">

 <xs:attribute type="xs:string" name="name"/>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 <xs:attribute type="xs:string" name="name"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="UserInterface">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="window">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:string">

 <xs:attribute type="xs:string" name="name"/>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 <xs:attribute type="xs:string" name="name"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

REAL TIME TRACKING !41

Meanshift And Camshift
Tracking

The meanShift algorithm is a robust method of finding local extrema
in the density distribution of a data set.
The meanShift algorithm runs as follow:

• Choose a search window : its initial location, its type, its shape
and its size.

• Compute the window’s center of mass.
• Center the window at the center of mass
• Return to step 2 until the window stops moving.

REAL TIME TRACKING !42

	 	 	
The algorithm can be used for visual tracking. In this case, the color
histogram of the tracked object is used to compute the confidence
map.
The simplest of such algorithm would create a confidence map in the
new image based on the object histogram taken from the previous
image and MeanShift is used to find the peak of the confidence map
near the object’s previous position.
The confident map is a probability density function on the new image
assigning each pixel of the new image a probability, which is the
probability of the pixel color of the pixel color occurring in the object
in the previous image.

CamShift
A related algorithm is the CamShift tracker. It differs form the
MeanShift in that the search window adjust itself in size.

REAL TIME TRACKING !43

Results

Test

Camera Used: ISight di Apple.

Details:

REAL TIME TRACKING !44

The application has been tested during the planning and
implementing phase.
We have created a lots of different situation in order to understand the
weaknesses of the algorithm.
The parameters, thorough which the algorithm has been tested follow
the requires:

• real-time constrains.
• the algorithm should allows the user to select all kind of objects.
• the tracked object could move around either the camera.

Final Considerations:

In a dynamic context the changes in illumination are, without any
dubs, the major problems. They can causes changing in: colors,
sharpness and also create shadows.
For this reason we have done a few tests changing the illumination and
appeared that if the light changing are quite limited the algorithm can
still track the objects.

REAL TIME TRACKING !45

