Specification and Simulation of Digital Systems – 15/16

Assignment Specification

Prof. Luca Sterpone

Assignment

Individual project

Design and Simulation of a System-on-a-Chip (SoC) including

- Controller Unit
- Data Memory
- Xilinx IP peripheral
- Specific IP and simulation function for each student assignment

Description

- Design a self-test module able to perform a selfcheck of its operation at the power-up of the system
- The system will be hypothetically adopted on incar infotainment
 - Once the car-power is turned on the system must execute a self-test to check if its operations are working properly.
 - The test must be performed within **500** μ **s**
 - In case of right operation the system must activate an ok_status signal

Description

- If the system has a malfunction it must activate a fault_status signal and on a debug-port it provides the number of erroneous data followed by the erroneous results.
- The width of the debug-port must be correlated with the size of the test-pattern stimuli used.

Top-level entity

Internal architecture

00_Introduction

Signals description

- The Infotainment system elaborates on the basis of a 150 MHz clock signal.
- **The car power-on signal is active for 2** μ **s**
- The ok_status signal remains active for **50** μ s
- The fault_status signal remains active until all the debug information are transmitted on the output:
 - Numbers of erroneous results: **1** μ **s**
 - Erroneous results: *pattern dependent*

Internal component description

- Infotainment ECU: the main control unit of the entire infotainment digital system self-test module
- Test RAM: RAM memory block storing the results of the test
- Golden ROM: ROM memory block storing the input patterns and the expected "golden" (i.e., right) results
- Infotainment Core: the Xilinx Logic Core unit selected by each student